DNA Methylation and Chromatin Organization in Insects: Insights from the Ant Camponotus floridanus
نویسندگان
چکیده
Epigenetic information regulates gene function and has important effects on development in eukaryotic organisms. DNA methylation, one such form of epigenetic information, has been implicated in the regulation of gene function in diverse metazoan taxa. In insects, DNA methylation has been shown to play a role in the regulation of gene expression and splicing. However, the functional basis for this role remains relatively poorly understood, and other epigenetic systems likely interact with DNA methylation to affect gene expression. We investigated associations between DNA methylation and histone modifications in the genome of the ant Camponotus floridanus in order to provide insight into how different epigenetic systems interact to affect gene function. We found that many histone modifications are strongly predictive of DNA methylation levels in genes, and that these epigenetic signals are more predictive of gene expression when considered together than when considered independently. We also found that peaks of DNA methylation are associated with the spatial organization of chromatin within active genes. Finally, we compared patterns of differential histone modification enrichment to patterns of differential DNA methylation to reveal that several histone modifications significantly covary with DNA methylation between C. floridanus phenotypes. As the first genomic comparison of DNA methylation to histone modifications within a single insect taxon, our investigation provides new insight into the regulatory significance of DNA methylation.
منابع مشابه
Effects of DNA Methylation and Chromatin State on Rates of Molecular Evolution in Insects
Epigenetic information is widely appreciated for its role in gene regulation in eukaryotic organisms. However, epigenetic information can also influence genome evolution. Here, we investigate the effects of epigenetic information on gene sequence evolution in two disparate insects: the fly Drosophila melanogaster, which lacks substantial DNA methylation, and the ant Camponotus floridanus, which...
متن کاملGenome-wide and Caste-Specific DNA Methylomes of the Ants Camponotus floridanus and Harpegnathos saltator
BACKGROUND Ant societies comprise individuals belonging to different castes characterized by specialized morphologies and behaviors. Because ant embryos can follow different developmental trajectories, epigenetic mechanisms must play a role in caste determination. Ants have a full set of DNA methyltransferases and their genomes contain methylcytosine. To determine the relationship between DNA m...
متن کاملMolecular Characterization of Antimicrobial Peptide Genes of the Carpenter Ant Camponotus floridanus
The production of antimicrobial peptides (AMPs) is a major defense mechanism against pathogen infestation and of particular importance for insects relying exclusively on an innate immune system. Here, we report on the characterization of three AMPs from the carpenter ant Camponotus floridanus. Due to sequence similarities and amino acid composition these peptides can be classified into the cyst...
متن کاملEpigenetic (re)programming of caste-specific behavior in the ant Camponotus floridanus.
Eusocial insects organize themselves into behavioral castes whose regulation has been proposed to involve epigenetic processes, including histone modification. In the carpenter ant Camponotus floridanus, morphologically distinct worker castes called minors and majors exhibit pronounced differences in foraging and scouting behaviors. We found that these behaviors are regulated by histone acetyla...
متن کاملGenomic comparison of the ants Camponotus floridanus and Harpegnathos saltator.
The organized societies of ants include short-lived worker castes displaying specialized behavior and morphology and long-lived queens dedicated to reproduction. We sequenced and compared the genomes of two socially divergent ant species: Camponotus floridanus and Harpegnathos saltator. Both genomes contained high amounts of CpG, despite the presence of DNA methylation, which in non-Hymenoptera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2015